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ABSTRACT

The relationship between hyperspectral and multispectral remotely sensed images and ground-based soil and crop
information was investigated for two central Missouri experimental fields in a corn (Zea mays L.)-soybean (Glycine

max L.) rotation. Multiple airborne hyperspectral and IKONOS images were obtained during the 1999 and. 2000
growing seasons. Hyperspectral images (HSI) covered 120 bands from 471 to 828 nm with a spatial resolution of I
m. Multispectral IKONOS images included four bands ranging from blue, green, red, and near-infrared with a spatial
resolution of 4 m. Geometric distortion of the pushbroom-type sensor caused by aircraft attitude change during image
acquisition was corrected with a rubber sheeting transformation. Within-field data collection included crop yield, soil
electrical conductivity (EC.), and soil chemical properties. Simple correlation, multiple regression, and principal
component analysis were used to identify those hyperspectral data most highly related with field measured soil and
crop properties. Blue wavelengths were most highly correlated with EC. measurements. For corn, the early reproductive
stage provided the best relationships between final yield data and spectral signatures in both years. For soybeans, yield
data were highly correlated with wavelengths in the near infrared region from August images in both 1999 and 2000.
Maps estimating soil EC. and crop yield from hyperspectral and multispectral images were derived.
Keywords: Remote sensing, Precision agriculture, Hyperspectral images, Multispectral images. .

1. INTRODUCTION

Precision agriculture, or site-specific crop manage-

ment (SSCM), is an information-based management-

intensive approach to farming. Instead of managing a

field as a whole, the philosophy of precision

agriculture is to manage individual areas within a

field. Understanding the functional relationship of

crop yield to other spatial factors, therefore, is a

basic need for successful SSCM (Sudduth et aI.,

1996). Identification ahd quantification of within-

field soil and crop condition (such as crop density

differences, differences in soil properties, stress. or

damage caused by diseases, weeds, and pesticides)

is needed to understand their effect on yield. If

crop stress indicators can be spatially located, then
an observer can visit that area in the field to

diagnose the cause.

Image-based remote sensing (RS) is an efficient

way to detect spatial differences in crop arid soil

conditions within a field. The recent convergence

of technological advances in geographic information

systems (GIS), global positioning systems (GPS),

and automatic control of farm machinery through

variable rate technology (VRT) within the precision

crop management system have provided an ideal

framework for utilizing RS for farm management

(Moran, 2000). Remotely sensed data are also

useful in helping to define management units.

Remote sensing offers the potential for identifYing

fine scale spatial patterns in soil properties across a

field, and optimizing the soil sampling strategy to

quantifY those patterns (Mulla et aI., 2000).

Imaging spectrometry which is known as hyper-

spectral sensing is defmed as the simultaneous

acquisition of images in many relatively narrow,

contiguous and/or non-contiguous spectral bands

throughout the ultraviolet, visible and infrared
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portions of the spectrum (Jensen, 2000). The value

of an imaging spectrometer lies in its ability to

provide a high-resolution reflectance spectrum for

each picrure element in the image. The reflectance

spectrum in the region from 0.4-2.5 urn may be

used to identify a large range of surface cover

materials that cannot be identified with broadband,

low-spectral-resolution imaging systems such as the

Landsat MSS, TM, or SPOT (Goetz et aI., 1985).

Airborne pushbroom scanning provides an effec-

tive method for hyperspectral imaging (HSI) with a

low cost digital CCD camera (Mao, 2000). How-

ever, the data obtained with an aerial pushbroom

HSI system suffers from geometric distortions.

Some of the distortions are caused by aircraft

attitude change during image scanning. When the

aircraft attitude changes, the scanner is presented

with an off-nadir scene, causing distortion. This

problem is especially severe in the in-track direc-
tion due to roll of the aircraft. These distortions

must be corrected before the image data can be

geo-referenced and used for field pattern identifi-

cation ~Yao et aI., 2001).

The objective of this study was to explore the

relationships between the spectral reflectance

signatures and biophysical properties of crops and

soils using HSI, and to evaluate the usefulness of

HSI for quantifying within-field spatial variability.

2. GROUNDDATACOLLECTIONAND PRO-

CESSING

Data were collected on two fields (Field .1, 35

~
luantify Within-field Spatial Variability

ha and Gvillo, 13 ha) located within 3 km of each.

other near Centralia, in central Missouri. The soils

found at these sites are characterized as claypan

soils of the Mexico-Putnam association (fine,

smectitic, mesic aeric Vertic Aqualfs). Mexico-

Putnam soils formed in moderatelyfine textured

loess over a fine textured pedisediment. Surface

textures range from a silt loam to a silty clay

loam. The subsoil claypan horizon(s) are silty clay
loam, silty clay or clay, and commonly contain as

much as 50 to 60% montmorillonitic clay. Within

each study field, topsoil depth above the claypan

ranged from less than 10 em to greater than 100

cm. Because of the high-clay subsurface horizons,

topsoil depth above the claypan is often correlated

to spatial variations in crop productivity (Kitchen et

aI., 1999).

Ground measurements used in this analysis

included combine grain yield, soil electrical

conductivity (ECa), and soil chemical properties.

Two com and two soybean crop-years Were

obtained (Table 1). Gleaner R42 or R62 combines

equipped with AgLeader Yield Monitor 2000 yield

sensing systems were used to obtain yield data.

Data collection and processing techniques were as

described by Birrell el al. (1996). To remove

outliers, data points four standard deviations above

or below the mean yield were removed, as were

data collected at harvesting speeds of less than

0.75 m/s. Yield data were analyzed using geosta-

tistics, and mapped by block kriging (1 m cell

size) with appropriate semivariogram models for

comparison to spectral signatures and vegetation
indicies.

Table 1. Cropping information and image acquisition dates in 1999 and 2000
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Seeding Harvest I Image acquisitiondates
Year Crop

I (S : compared with Soil properties,Y : compared with
date date

Yield data)

1999 Com May 24 Nov. 5, 6 July 7(Y), August 27(Y)
Field 1 April 12(S), April 26(S), July 25(Y), August 29(Y),2000 Soybean May 20, 21 Nov. 1,11

September 11(Y)

1999 Soybean May 10 lact. 6 July 7(Y), August 27(Y)
Gvillo I

2000 Com April 11 Sep. 18,19 June 25(Y), July 25(Y), September 11(Y)
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Fields were grid soil-sampled to a 15 cm depth

and analyzed for P (Bray 1 extractable), K, Ca,

Mg (ammonium acetate extractable), CEC (sum of

bases), organic matter (wet oxidation), salt pH and

neutralizable acidity (NA, Woodruff buffer method)

using standard University of Missouri procedures

(Brown and Rodriguez, 1983). Grid spacing was 33

m for Field 1 and 25 m for Gvillo. Soil sampling

point coordinates were later used to extract

coincident spectral signatures obtained. from the
HSI.

Soil ECa was measured for each field in the fall

of 1999 using two commercial sensor systems --
the Geonics EM38 and the Veris 3100. The EM38

operates on the principle of electromagnetic

induction and, as operated in the vertical dipole

mode, provides an effective measurement depth of

approximately 1.5 m. The EM38 was used with a

GPS-enabled mobile system described by Sudduth

et al. (200I) to collect data every I s on

measurement transects spaced 10m apart. The

Veris 3100 is a complete commercial system that

measures ECa through coulter electrodes that

penetrate the ground surface. This device provides

effective measurement depths of approximately 0.3

and 1.0 m. Data was collected every I s on a 10

m transect spacing. At the operating speeds used,

this time interval corresponded to a 4 to 6 m

spacing between sample points. In previous

research, we have found these two sensors to

provide similar, but not identical mapped ECa

information on claypan-soil fields (Sudduth et aI.,

1999). EM38 and Veris deep readings have been

reliable estimators of claypan-soil topsoil depth

(Doolittle, et aI., 1994; Kitchen et aI., 1999;

Sudduth et aI., 1999; Sudduth et aI., 200 I).

3. HYPERSPECTRALAND

IMAGE ACQUISITION,
AND PROCESSING

MULTISPECTRAL

RECTIFICATION,

Airborne images were taken 2 times in 1999 and

7 times in 2000 during the cropping (Table I).

Multispectral images of IKONOS were taken on

-- -_u - ---

June 29, August 4, and September 6, 2000.

Soybeans were seeded on May 20 and 21, 2000

for Field I, which had bare soil at that time due

to previous tillage. Field I images of HSI taken on

April 12 and April 26, 2000 after spring tillage

were compared with grid-sampled soil properties

and soil ECa. Since the Gvillo field was cropped

under no-tillage and was covered with crop residue

and weeds before seeding, no comparison of soil

properties and HSI was attempted on that field.

Yield data were compared with hyperspectral

images taken on July 7 and August 27, 1999 and

July 25, August 29, September 11, 2000 for. Field
1, and July 7 and August 27, 1999 and June 25,

July 25, and September 11, 2000 for GviIlo, and

also with multispectral IKONOS images taken on

June 29, August 4, and September 6, 2000 both
for Field 1 and Gvillo.

The aerial HSI system used in this study was a

pushbroom prism-grating scanner (RDACSH3;Real

Time Digital Airborne Camera System H3) operated

by Spectral Visions Midwest (Mao, 2000). Images

. were generally acquired between 10:30 a.m and

noon. Images included 120 bands from 471nrn to

828 nrn (3 nrn interval) with a spatial resolution of
1 m and 0.0015 um Full Width at Half Maximum

(FWHM). Pushbroom scanning is a widely used

method for airborne HSI, in which an airborne

imaging sensor acquires one image line at a time

while the aircraft provides a mobile platform to

carry the sensor across the target area.

Geometric distortion was observed in many

images, probably due to aircraft attitude change

during image acquisition. In general, such geometric

distortion should be corrected at the system

acquisition level. We applied a rubber sheeting

model, which uses piecewise polynomials for image

rectification rather than the linear polynomial

transformation. We have very accurate surveyed

field boundary vector data and resolution merged

IKONOS image with a spatial resolution of I m

taken on August 4, 2000 for both fields. IKONOS

image was registered and matched with field

boundary and used as a reference image for

georeferencing airborne imagery. Rubber sheeting
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models are not recommended for rectification of

areaoutsidefield of interestbecauseof geometric
uncertainty, and should be used only when the

geometric distortion is severe, ground control points

are abundant and no other geometric model is

applicable (ERDAS Field Guide, 1997). Foghani

(2000) reported that a more precise image was

obtained by using a rubber sheeting procedure,

compared to polynomial adjustment or an ortho-

photography algorithm. All HSI data were resampled

with a spatial resolution of 4 m due to the file size

and the purpose to compare with IKONOS, and
converted to ascii format for statistical data set

preparation. Landsat-like bands set was created by

integrating spectral reflectance values of HSI to the

real 1M bands, which are the same band range as

IKONOS and used for data analysis.

Atmospheric and bidirectional reflectance distribu-

tion factor (BRDF) effects should be considered to

compensate for solar angle, elevation effects and

seasonal change. In this study, chemically-treated

reference tarps with known reflectances are laid out

for aerial image normalization during flight for two

images out of 18 images and then percent

reflectance were calculated using the regression

model of pixel values of HIS for known

reflectance of tarps. Two images with tarps taken

on April 12 and 26, 2000 were calibrated

radiometrically and used in comparison with ground

sensed soil properties such as soil ECa and

chemical properties. For this study, hyperspectral

imag~s were generally acquired under clear skies
and at a constant low altitude of approximately

1200 meters to get the specified I m pixel size

imagery. Therefore compensation for atmospheric

effects was not applied and digital numbers (DNs)

of each image were used for statistical analysis in

this study. The BRDF effect may influence pixel

values more than atmospheric effect does in aerial

imaging. The impact of BRDF distribution

functions is still not well understood despite the
fact that we know if exists in much of the

commonly used remotely sensed (Jensen, 2000).

Vegetation indices are defined as dimensionless,
radiometric measures that function as indicators of

relative abundance and activity of green vegetation.

These indices could be related as functions of leaf

area index (LAI), percentage green cover,

chlorophyll content, green biomass, and absorbed

photosynthetically active radiation (APAR) (Jensen,

2000; Hong, 1999; Thenkabail et aI., 2000;

Wiegand et aI., 1991). A vegetation index should

maximize sensitivity to plant biophysical para-

meters, normalize or model external effects such as

sun angle, viewing angle, and the atmosphere,

normalize internal effects such as canopy back-

ground variations, and be coupled to some specific

measurable biophysical parameter such as biomass,

LAI, or APAR (Jensen, 2000). A sensitivity analy-

sis assessing wavelength combinations on spectral

indicies for explaining yield variability was per-
formed. 10 bands in each of the near infrared

(0.76 urn--Q.79 urn), red (0.64 um--Q.67 um), green

(0.52 um~0.55 um), and blue (0.47 urn-0.50 um)

wavelengths, whose range were stable for correl-

ation coefficient continuity, were selected for all

possible bi-band combinations for the following two

indices calculation. All possible bi-band ratio vege-

tation indices (RVI=NIR/(RED or GREEN or BLUE)

and normalized difference vegetation index (NDVI=

(NIR-RED or GREEN or BLUE)/(NIR+RED or

GREEN or BLUE) of HSI, 300 combinations of

wavelengths for calculating the indicies, were

computed and then correlated with yield data.

4. DATAANALYSIS

Principal component analysis (PCA) was com-

pleted on each image and used as a data set for

further statistical analysis. PCA is a procedure for

transforming a set of correlated variables into a

new set of uncorrelated variables, the principal

components (PCs). This transformation is a rotation

of the original axes to new orientations that are

orthogonal to each other, thus there is no corre-

lation among the transformed variables. Another

property of PCA is that the majority of the

information contained in a large set of highly

correlated variables (wavelengths, in this case) can

be represented with a much smaller number of
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Fig. 1. The flow chart of procedures in this study.

PCs. The first five (PCs) of each image were

calculated and used for data analysis. Standard

correlation and stepwise multiple linear regression

(SMLR) analyses were carried out to determine the

relationship between image signatures and ground-

collected soil and crop yield. Using. the GPS

coordinates for soil ECa, soil chemical properties,

and yield, pixel values of coincident points on the

imagery were extracted, and PCs calculated. Using

SMLR, soH ECa and chemical property data were

regressed against image data consisting of 120

bands, 4 Landsat-like bands, 4 IKONOS bands, and

5 PCs of the Field I images taken in April 12 and

26, 2000. Similarly, yield data were regressed

against hyperspectral image signatures (120 bands,

4 Landsat-like bands, 4 IKONOS bands, and 5 PCs

of the Field I images taken in April 12 and 26,

2000. Similarly, yield data were regressed against

hyperspectral image signatures (120 bands, 4

Landsat-like bands, 4 IKONOS bands, and 5 PCs)

from several Field I and Gvillo images (Table 1).

The flow chart of procedures are shown in Fig. I.

5. RESULTSAND DISCUSSION

A. Soil Properties and Hyperspectral Sig-
natures

The spectral reflectance of soil is influenced by

moisture content, organic matter, particle size? iron

oxide, mineral composition, soluble salts, parent

materials, and other factors (Baumgardner et aI.,

1985). It has also been noted that the environ-
mental conditions under which soils have been

formed affect soil reflectance. To investigate the

specific relationships present in this data, correla-

tion analysis was completed and correlation coeffi-

cients (r) were plotted against wavelength (Fig. 2

and 4) to investigate the effective wavelength range

as related to soil ECa and chemical properties -
pH, NA, organic matter, P, Ca, Mg, K, and CEC.

HSI taken on April 12 and 26, 2000 used for the

analysis were calibrated using known-reflectance

tarps.

Soil ECa had a strong negative correlation with

all 120 bands and Landsat-like bands (LBs) (Fig.

2). The blue wavelengths showed the highest

correlation with ECa, with the .correlation decreas-

ing rapidly as the wavelength increased to around

0.56 urn. In the green and red wavelengths,

correlation coefficients for ECa were essentially
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Fig. 2. Correlations of 120 wavelengths, Landsat-like bands(LB), and NLB31«LB3-LB1)/(LB3+LB1»
to EC readings obtained by EM38 and Veris Systems.

a) Veris deep sensing data b) Landsat-like band 1 c) First principal component d) NLB31=(LB3-LBl)/(LB3+LBl)

Fig. 3. Soil EC map and images derived from US data of April 2000.

constant. The Veris 3100 deep (0-1.0 m) EC.

reading was most highly correlated with a spectral

index, NLB31 (LB3-LB1)/(LB3+LB1». Around 0.74

-0.75 urn a region of noisy data was found in

each correlogram (Fig. 2). This is the location of

an O2 and H2O absorption band, where radiant

energy is absorbed by these atmospheric con-

stituents (Jensen, 2000).

SMLR analysis was applied to the soil ECa and

hyperspectral bands for the April 2000 images from

Field 1. The most predictive models with

coefficients of determination (R2) ranging from
0.297 to 0.388, are shown in Table 2. The model

using EC. data measured by Veris 3100 deep

sensing was the best significant model for Field 1

with R~0.388. In addition to the full model, a

conservative SMLR model, with R2 = 95% of the

full model was determined (Table 2). The intention
of this model was to reduce the chance of

overfitting the data as compared to the full model.

A similar approach worked well in a previous

spectral data analysis (Sudduth and Hummel, 1991).

For all models (Table 2), the number of wave-

lengths used was reduced by this approach over

50% over the full model, suggesting that little
information was contained in those additional data.

Five PCs derived from the 120 hyperspectral bands

were correlated with soil EC. data (Table 3). All
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five PCs were significantly related to ECa readings. salinity, organic compounds, and metals (Geonics

Table 2. Stepwise multiple regression model for estimating soil electric conductivity from image
data

* Minimum model which yielded R2 ::::: 95% of full model R2

PCI of the HS image was highly, negatively

correlated with soil ECa and explained over 80%

of the variance in the HS data. Multiple regression

of the PC data (Table 3) was much less predictive

of soil ECa than SMLR of the original data (Table

2). Within-field ECa variability map was made

using the LBI, IsI principal component, and a

spectral index (NLB31) of the imagery taken on

April 12, 2000 (Fig. 3 (b), (c), (d». Soil ECa can

be affected by a number of different soil properties

including clay content, soil water content (Kacha-

noski et aI., 1990), varying depths of conductive

soil layers (Doolittle et aI., 1994), temperature,

Limited, 1992). On these claypan soil fields, soil

ECa is usually highest on eroded side-slopes. Here

the claypan is often exposed and therefore the

surface will have much higher clay content than at

other landscape positions. We have also found soil

organic matter higher on eroded side-slopes than in

other landscape positions (data not included). We

hypothesis that variation in soil clay content

(primary factor) and organic matter (secondary

factor) are the major soil conditions that provide

this relationship between spectral information and

soil ECa

Soil chemical properties were related to blue,

- 88-
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Full stepwise Conservative Model*
Dependent Image Model
Variable Date

R2 N. of R2
N. of

A s (urn)AS AS

Apr.12 0.310*** 74 0.295*** 12 0.471, 0.474, 0.477, 0.498, 501, 0.669, 0.672,
0.687, 0.702, 0.738, 0.741, 0.744

EC-EM38

Apr.26
0.322***

66 0.306*** to 0.471, 0.480, 0.498, 0.501, 0.669, 0.672, 0.732,
0.741, 0.744, 0.747

0.471, 0.474, 0.477, 0.480, 0.483, 0.486, 0.489,
0.504, 0.531, 0.540, 0.543, 0.546, 0.549, 0.552,

Apr.l2 0.340*** 80 0.323*** 30 0.555, 0.558, 0.561, 0.567, 0.570, 0.573, 0.579,
0.588, 0.654, 0.681, 0.705, 0.708, 0.723, 0.738,
0.741, 0.744

EC-VRsh 0.471, 0.474, 0.477, 0.480, 0.483, 0.486, 0.489,
0.492, 0.495, 0.525, 0.531, 0.534, 0.540, 0.543,

Apr.26 0.297*** 81 0.282*** 36 0.546, 0.552, 0.555, 0.558, 0.561, 0.570,. 0.573,
0.579, 0.588, 0.591, 0.654, 0.669, 0.678, 0.684,
0.699, 0.711, 0.741, 0.744, 0.792, 0.795, 0.807,
0.813

0.471, 0.474, 0.477, 0.480, 0.483, 0.489, 0.495,

Apr.l2 0.388*** 71 0.369*** 18 0.498, 0.561, 0.567, 0.570, 0.573, 0.576, 0.579,
0.588, 0.672, 0.741, 0.744

EC-

VRdeep 0.471, 0.474, 0.477, 0.480, 0.483, 0.489, 0.495,

Apr.26 0.330*** 75 0.313*** 25 0.498, 0.552, 0.558, 0.561, 0.567, 0.570, 0.579,
0.588, 0.591, 0.603, 0.642, 0.669, 0.741, 0.744,
0.747, 0.792, 0.807, 0.828
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Table 3. Relationships between soil EC readings and image-derived principal components

Variable
EC-EM38

EC-VRsh

EC-VRdeep

Date
VAR'

R2 of MR for all PCs

Apr.12 Apr.26
0.175*** 0.234***

0.082*** 0.090***

0.125*** 0.133***
PC3

Apr.12
0.92

Apr.26
0.94

PCI PC2
Apr.12
81.36

Apr.26
82.68

Apr.12
3.90

Apr.26
2.16

. . . . .. .. . . . . . . . . . . . . . . . . . . . . . . . .. . .. r . .. . . . . . . . . . . .. .. . . . . . . . . . . . . . . . . .. .

Variable
EC-EM38

EC-VRsh

EC-VRdeep
* = O.05>p>O.Ol,

0.4

0.3
0 NLB31_NA

0

-0.1

. . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . .. . . . . . . . . . . r . . . . . . . . . .. . . . . .. .. . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.113*** -0.144***

0.029*** -0.060***

0.091*** -0.110***

** =O.Ol>p>O.OOl, *** =p<O.OOl,

. pH . NA . OM

. P . LByH LB_NA
ALB OM 8LB P

April 12, 2000

0.4

NLB31_NA . pH . NA . OM
. P . LByH LB_NA
.. LB OM 8 LB P

0.2 1 ".*. '
, .""''''':
0.1N1-B31_0M ","", ".

"''''" " ,..'...~."",' .., ..,'

.:-,>~,~, :'::~~:~:(.;:;~:;~;":
NLB31p. ...;:~";;""".';1-'P.'" .': ",,,.' ",'" ~.. -' .;:. . "''' "'''':-' ..'.. 1".' ,:;.,. ""

-0.2~ " "-~ '. . '....'~' ' '" .,,,.. '"... . III" 8'

-0.3jNLB31yH

0.3 0

' ''''. ' ,, ~ .

02 1NLB31OM*:r ,., ""..",,,,,..." :::.' ,:..','
. " - .", ,"","""'., '.'. ".

0.1 ~ .
~ 0

, " .'
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NLB31 F"''": ,8 "-"""'~.':;'.:'/';::' "~..",- "".. , ""V " ;;;;',-.,' , .;, '''''''''''..',. '.'. ".~.P "--"-"'6".' """." ' ,
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-0.2

-0.3
NLB31yH April 26, 2000

-0.4
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Fig, 4. Correlations of 120 wavelengths, Landsat-like bands(LB), and NLB31«LB3-LB1)/(LB3+LB1))
to soil chemical properties.

- 89-

-0.384*** -0.400*** -0.115*** 0.108***
-0.283*** -0.280*** -0.034*** 0.016*
-0.337*** -0.304*** -0.045*** 0.025

PC4 PC5

Apr.12 Apr.26 Apr.12 Apr.26
0.56 0.66 0.38 0.40

0.045*** -0.235*** 0.040*** 0.014

0.017* ,-0.096*** -0.009 0.007

0.047*** -0.175*** 0.020** 0.017*
a % varianceexplainedby each Pc.
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properties were detennined by soil color and thus,

the factors influencing soil color also influenced

soil chemical property variability. Except pH, all

soil fertility data were negatively correlated to

hyperspectral data. Correlations of Mg and CEC to

hyperspectral bands and LBs were the highest over

the range of wavelengths. For all soil properties,

the highest correlations were generally found from

0.47 urn to 0.52 urn, in the blue bands of the

visible region, and with NLB31. SMLR analysis

was applied to the soil chemical properties and

hyperspectral images obtained on April of 2000 for

Field 1. The best significant models for soil

chemical properties, with R~ values ranging from

0.270 to 0.416 were obtained on April 12 (Table

4). The models for NA, P, and CEC were the

most predictive, with R2 values of 0.350, 0.415,

and 0.416, respectively. Compared to EC. models,

models for grid-sampled soil fertility properties

included fewer wavelengths and the reduction in

wavelength number from the full to conservative

model was less (Table 4). This may have been due
to the much smaller number of observations

available for the soil fertility data (n = 365) as

compared to the EC. data (n > 8900).

The five PCs derived from 120 hyperspectral

bands were correlated with soil chemical property

data (Table 5). PCI of the HS image explained
over 80% of the variance in the HS data. The

highest correlations were found between PCI and

Mg, K, and CEC, and between PC2 and pH, NA,

and OM. PC-based multiple regression was less

predictive of soil fertility data than was SMLR

based on the original wavelength data.

B. Yield Data and Hyperspectral Signa-
tures

Hyperspectral image signatures in the 120

individual narrow bands, Landsat-like bands (LBs),

IKONOS bands (IBs) were correlated with combine

yield data for Field 1 and Gvillo in 1999 and

2000 (Fig. 5). Com was seeded on May 24 and
harvested on November 5 and 6 in 1999 at Field

1. Hyperspectral image signatures taken on July. 7,

1999 were poorly correlated to yield data. At this

stage, 43 days after seeding (DAS), the crop was
at about VII and some soil was still visible

through the com canopy. About one month after

flowering, the August 27 date, the hyperspectral

signatures were correlated with yield data, nega-

tively in the visible and positively in the near

infrared region. This response is expected since

wavelengths in the visible region are closely related

to light absorption by plant pigments such as

chlorophylls. On the other hand, plants do not

absorb near-infrared light and thus reflect more in

the near infrared region. Correlation coefficients (r)

of LBs for yield were almost the same as those

for the corresponding HS wavelengths for each

image date except for July 25, 2000. In 2000, com

was seeded on April II and harvested on

September 18 and 19 at Gvillo. On June 25 the

com crop was in the early reproductive stage (74

DAS), and still green enough to show a typical

correlogram between yield and "the spectral signa-

. ture. As com plants matured, the spectral signature

was not correlated with the final yield in the near

infrared region on July 25, but a high correlation

was still found in the visible region. LB corre-

lations were higher than HS correlations in the

visible region. On Septembe~ 11, one week before

harvest, the com canopy had senescenced. The

correlogram did not show any distinct trends except

in near infrared region, where yield data and the

.spectral signature were inversely related. In both

years, the best relationships between final yield

data and spectral signatures were found in the early

reproductive stage. On August 4, 2000 (IKONOS),

the com crop (Gvillo) was in the early repro-

ductive stage (85 DAS), and still green enough to

show the highest correlation between yield and

spectral signature. There was no imagery available

during the late vegetative stage, but signatures at

that stage would also be expected to sho\\ high

correlations to yield. Similarly, Hong et al.( 1997)

reported reflectance of red wavelength was highl:

related with final yield in booting stage and band

ratio (NIR/GREEN) in heading stage for ric~ .~."'"
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Table 4. Stepwise multiple regression model for estimating soil fertility from image data

* Minimum model which yielded R' ::::: 95% of full model R2.
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Full stepwise .
Conservative Model*

Variable Image Model
Date

R2 No. of R2
No. of

A s (urn)
AS AS

Apr.12 0.337*** 18 0.320*** 14 0.474, 0.510, 0.531, 0.546, 0.567, 0.618, 0.672, 0.687,

pH
0.717, 0.723, 0.726, 0.753, 0.777, 0.828

0.471, 0.507, 0.540, 0.549, 0.555, 0.603, 0.684, 0.690,
Apr.26 0.358*** 20 0.340*** 16

0.708, 0.711, 0.714, 0.726, 0.747, 0.753, 0.789, 0.795

Apr.12 0.350*** 17 0.332*** 14
0.474, 0.498, 0.522, 0.525, 0.537, 0.567, 0.618, 0.687,

NA
0.717, 0.726, 0.741, 0.753, 0.777, 0.825

Apr.26 0.412*** 21 0.391*** 16 0.471, 0.474, 0.507, 0.540, 0.549, 0.555, 0.600, 0.684,
0.708, 0.726, 0.753, 0.762, 0.783, 0.789, 0.795, 0.807

0.480, 0.507, 0.531, 0.537, 0.543, 0.576, 0.627, 0.666,

Apr.l2 0.287*** 24 0.272*** 22 0.675, 0.678, 0.714, 0.720, 0.726, 0.735, 0.741, 0.744,

OM
0.747, 0.759, 0.768, 0.792, 0.801, 0.822

0.474, 0.531, 0.546, 0.549, 0594, 0.645, 0.657, 0.666,

Apr.26 0.321*** 21 0.304*** 17 0.687, 0.717, 0.729, 0.744, 0.762, 0.783, 0.810, 0.816,
0.828

Apr.12 0.415*** 21 0.394*** 16 0.486, 0.492, 0.495, 0.516, 0.531, 0.537, 0.627, 0.645,
0.654, 0.663, 0.708, 0.726, 0.735, 0.774, 0.798, 0.822

P 0.471, 0.483, 0.492, 0.534, 0.543, 0.555, 0.561, 0.576,

Apr.26 0.420*** 27 0.399*** 21 0.615, 0.621, 0.627, 0.645, 0.648, 0.654, 0.681, 0.696,
0.702, 0.714, 0.741, 0.762, 0.798

! 0.477, 0.504, 0.531, 0.534, 0.543, 0.552, 0.567, 0.570,
i
iApr.12 0.270*** 23 0.256*** 21 0.612, 0.642, 0.666, 0.699, 0.702, 0.711, 0.714, 0.723,

Ca I
I 0.747, 0.759, 0.765, 0.774, 0.789

: Apr.26 -

Apr.l2 0.334*** 18 0.317*** 12 0.474, 0.486, 0.495, 0.525, 0.543, 0.564, 0.621, 0.741,
0.753, 0.783, 0.798, 0.801

Mg 0.471, 0.483, 0.507, 0.543, 0.561, 0.603, 0.612, 0.615,

Apr.26 0.415*** 26 0.394*** 20 0.624, 0.639, 0.675, 0.678, 0.696, 0.705, 0.744, 0.753,
0.783, 0.789, 0.801, 0.825

0.474, 0.504, 0.516, 0.537, 0.627, 0.654, 0.657, 0.660,

Apr.12 0.279*** 22 0.265*** 19 0.708, 0.723, 0.726, 0.735, 0.753, 0.762, 0.774, 0.783,

K 0.804, 0.819, 0.822

Apr.26 0.304*** 13 0.289*** 10 0.501, 0.558, 0.594, 0.645, 0.681, 0.696, 0.714, 0.717,
0.726, 0.744

0.474, 0.477, 0.486, 0.495, 0.516, 0.531, 0.537, 0.543,

Apr.12 0.416*** 33 0.395*** 28
0.570, 0.594, 0.603, 0.618, 0.630, 0.654, 0.699, 0.702,
0.711, 0.714, 0.717, 0.726, 0.738, 0.741, 0.753, 0.783,

CEC 0.792, 0.798, 0.822

0.474, 0.483, 0.507, 0.573, 0.603, 0.612, 0.615, 0.624,

Apr.26 0.382*** 23 0.363*** 19 0.645, 0.651, 0.666, 0.678, 0.726, 0.729, 0.744, 0.753,
0.783, 0.789, 0.816
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Fig. 5. Correlations of 120 wavelengths, Landsat-like bands(LBs), and IKONOS Bands(IBs) to
yield data.

canopy.

For soybeans, yield data were generally most

highly correlated with wavelengths in the near

infrared region (Fig. 5). About 100 DAS soybean

plants reflected the most incident near infrared

energy in both years. There were no distinct

relationships between yield data and spectral

signatures in the visible region for any of the

images except for the image taken on August 27,

1999. Soybean plants usually flower about 50 DAS

depending on weather and crop management

conditions. Image acquisition dates for this study

were 57 and 107 DAS in 1999 and 65, 99, and

110 DAS in 2000. Although spectral signatures of

corn plants were obvious in the visible and near

infrared region at different growth stages, signatures

of soybean did not change appreciably after

flowering. We believe these signature differences to

be caused by differences in growth habit between

the two crops, especially during the reproductive

stage. Soybean is indeterminant and corn is

determinant in flowering behavior. It usually takes

5-7 days for flowering in corn and thus affects the

spectral signatures of corn within a short time. On

the other hand, soybean flowers over five to six
. -

weeks. Soybean flowers are behind broad-leaves,

which remain green for a long time, and spectral

signatures are not influenced a lot by flowering.

Ten narrow bands for each wavelength range

NIR(O.76-0. 79), RED(0.64"':0.67), GREEN(0.52-

0.55), and BLUE(0.47-0.50) - were selected based

on the correlogram (Fig. 5). The correlations with

yield of each of the 300 RVI and NDVI indices

obtained for each image date were expressed as a

scatterplot(Fig. 6). For corn, RVI and -NDVI
correlations were very similar in both years.

Correlations between yield data and RVI and

NDVI of August 27, 1999 were the highest

obtained. In 2000, high correlations were found

when using the RVI and NDVI data of June 25.

Vegetation indicies did not improve correlation

coefficients with yield, compared to raw HS data
and none of the individual band combinations

provided significantly better correlations than any

other combinations within each spectra] region.

implying that there was no advantage in this case
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Table 5. Relationships between soil fertility and image-derived principal components

for hyperspectral data as compared to multispectral

images.

In soybean, correlations with RVI and NDVI

were essentially the same. High correlations bet-

ween yield data and RVI and NDVI were obtained

with the August 27, 1999, when was 107 DAS.

There was no apparent difference in correlation
coefficient for the different narrow band combina-

tions in soybean as well as in com. Vegetation

indices itself did not improve correlation coeffi-

cients with yield. The best time to show high

correlation between yield and vegetation indices

coincided with the time for spectral signatures.

Multiple regression analysis using temporal data is

needed for improved explanation of yield data.

Relationships between yield and the first 5 PCs

of image data, along with the R2 of multiple

regression models for estimating crop yield using
all five PCs are shown in Table 6. All five PCs

derived from 120 HS bands were correlated with

yield data both for com and soybean. The best

model explaining yield using 5 PCs was obtained
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PCI PC2

Date Apr.12 Apr.26 Apr.12 Apr.26
VARa 84.48 84.11 1.40 1.92

R2 of MR for all PCs
I .................................... r ''''''''''''''''''''''''''''''''''''

Variable Apr.12 Apr.26

pH 0.095*** 0.156*** 0.023 0.096 0.289*** -0.383***

NA 0.123*** 0.197*** -0.056 -0.140** -0.338*** 0.412***

OM 0.114*** 0.148*** -0.067 .-0.122* -0.333*** 0.355***

P 0.022 0.018 -0.125* -0.122* -0.064 -0.016

Ca 0.017 0.019 -0.095 -0.077 0.016 -0.081

Mg 0.144*** 0.202*** -0.267*** -0.351 *** -0.283*** 0.321***

K 0.105*** 0.126*** -0.213*** :"0.239*** -0.256*** 0.266***

CEC 0.117*** 0.150*** -0.181 *** -0.249*** :"0.303*** 0.319***

PC3 PC4 PC5

Apr.12 Apr.26 Apr. 12 Apr.26 Apr.12 Apr.26
0.75 0.90 0.60 0.78 0.48 0.49

Variable
I

"'"'''' ... ............... ... "'"'''''''''''''''' ... r ......... ... ... ... ...... ... ........................ ...

pH 0.081 -0.010 -0.047 0.077 -0.030 -0.066

NA -0.061 0.022 0.030 -0.132* 0.029 0.074

OM -0.056 0.060 -0.043 -0.108* -0.077 0.089

P -0.036 0.044 -0.047 -0.014 -0.054 0.001

Ca 0.007 0.014 -0.070 0.063 -0.038 0.007

Mg -0.055 0.051 -0.079 -0.011 -0.023 0.014

K -0.002 0.016 -0.044 -0.010 0.003 0.064

CEC -0.051 0.038 -0.049 -0.054 -0.012 0.061

* '7 O.05>p>O.OI,** =O.OI>p>O.OOI,*** =p<O.OOI,a % variance explainedby each Pc.
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(a) (b)

a) Grid yield map obtained by yield
b) IKONOS band 4 (Sep. 6, 2000)

sensing system

Fig. 7. Yield map from yield monitoring and
IKON OS image for soybean in Field 1.

by yield

-" ---~-_.._----_.__._----..-

with the imagery of August 27, 1999 in com and

soybean. In these models, more than 75% and 90%

of the variability in final yield for com and

soybean, respectively, were explained by 5 PCs.

As the cropping season progressed more PCs were

required to explain the variance in the HS data.

A within-field yield variability map made was

shown and compared with grid yield map in Fig. 7

and 8. Image of IKONOS band 4 was highly

related to the Field I soybean yield map from

combine yield sensing (Fig. 7). Within-field yield

variability map from IKONOS-derived NDVI image

taken on August 4, 2000 and multiple linear

regressed image with 4 LBs of HS data showed a

high spatial relationship with com yield and

soybean yield, respectively, in the Gvillo field (Fig.

8).
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Table 6. Relationships between crop yield and image-derived principal components

* = O.05>p>O.OI,** =O.OI>p>O.OOI,*** =p<O.OOI, a % variance eXplained by each Pc.

6. CONCLUSIONS

Several statistical methods - correlation analysis,
SMLR, and PCA were successfully used to relate

within-field information on soils and crops with

hyperspectral imagery, Landsat-like bands, IKONOS

imagery. Hyperspectral image signatures of bare

soil taken on April, 2000 were highly correlated

with soil ECa and chemical properties. Blue wave-

lengths in the visible region, Landsat-like band I,
and the I" PC of HS data were informative for

soil ECa. Soil chemical properties were related to

blue, green, and red wavelengths in the visible

region rather than wavelengths in the near infrared

region, which implied that spectral reflectance

signatures form soil surface were usually deter-

mined by soil colors. Thus, the factor influencing

soil colors also had an important role to represent
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Image R2 of MR r
Crop Field Year model

Date for all PCs PC1 PC2

Ju!. 7 0.189*** -0.138*** 64.65 -0.109*** 26.90
Field I 1999

Aug. 27 0.445*** -0.281*** 49.99 -0.110*** 20.44

Com Jun. 25 0.274*** -0.379*** 49.01 0.175*** 21.58

Gvillo 2000 Ju!. 25 0.395*** -0.377*** 35.58 0.407*** 18.26

Sep. II 0.162*** -0.157*** 57.07 -0.314*** 15.82

Image r
Crop Field Year

Date PC3 PC4 PC5

Ju!. 7 -0.180*** 0.85 -0.320*** 0.73 0.081 0.31
Field 1 1999

Aug. 27 0.194*** 5.08 -0.051 *** 1.09 -0.170*** 1.01

Com
.

Jun. 25 0.130*** 2.51 -0.311 *** 1.87 -0.434*** 0.90

Gvillo 2000 Ju!. 25 -0.458*** 2.23 -0.023* 1.80 0.111*** 1.08

Sep. II -0.168*** 2.28 0.167*** 0.60 -0.193*** 0.53

Image
R2 of MR r

Crop Field Year model
Date for all PCs PCl PC2

Ju!. 7 0.126*** -0.270*** 79.41 0.082*** 13.04
Gvillo 1999

Aug. 27 0.673*** -0.547*** 62.15 0.591*** 24.91

Soybean Jun. 25 0.142*** 0.182*** 56.93 -0.221 *** 32.17

Field I. 2000 Ju!. 25 0.292*** 0.430*** 47.10 0.163*** 24.36

Sep. II 0.195*** 0.304*** 54.73 0.254*** 28.05

Image r
Crop Field Year

Date PC3 PC4 PC5

Ju!. 7 -0.046*** 0.72 0.027* 0.46 0.207*** 0.42
Gvillo 1999

Aug. 27 0.031*** 1.72 -0.144*** 0.70 0.019 0.56

Soybean Jun. 25 -0.016* 1.45 -0.187*** 0.88 0.058*** 0.48

Field I 2000 Ju!. 25 0.136*** 1.94 -0.153*** 1.05 0.014 0.83

Sep. II -0.090*** 2.36 0.105*** 0.95 0.027*** 0.80.
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[a]

a) NDVI_IKONOS image of Aug.

(bottom) map (bottom)

b) Multiple linear regression model

and grid yield map (bottom)

.-" ~

[b]

4, 2000 (top) and grid yield map obtained by yield sensing system

of 4 LBs for yield estimation from HS image of Aug. 27, 1999 (top)

Fig. 8. Yield maps from yield monitoring and airborne and satellite images for Gvillo in 1999 and
2000.

the spectral reflectance signatures. Soil moisture

undoubtedly played an important role. Within-field

ECa variability map was derived from LB1, 1st PC,

and a spectral index (NLB31) of the imagery taken

on April 12, 2000.

Hyperspectral image signatures in the 120 indi-

vidual narrow bands, Landsat-like bands, principal

components, and vegetation indices (RVI and

NDVI) derived from hyperspectral images, and

IKONOS image signatures were highly and

significantly correlated with final yield of com and

soybean if acquired at the proper growth stage.

Highest correlations to com yield were generally

found in the visible region. while highest

correlations to soybean grain yield were generally

found in the near infrared region. Highest corre-

lations between yield data and RVI and NDVI

were obtained with the August 27, 1999 data for

both com and soybean. Correlations with RVI and

NDVI were essentially the same. Within-field

soybean yield map was made using IKONOS band

4 from the imagery of September 6 in Field I.

Within-field yield variability map from IKONOS-

derived NDVI image taken on August 4, 2000 and

multiple linear regressed image with 4 LBs of HS

data were made for explaining com yield and

soybean yield, respectively, in the Gvillo field.

From PCA, the majority of total variance was

explained by the first PC when relating to soil

ECa and fertility data. For yield data, as the

cropping season progressed more pCs were required

to explain the variance in the HS data.

Additionally from this investigation we recom-

mend that the geometric distortion of an airborne

pushbroom sensor due to vehicle attitude change

should be corrected at the system level. Also, we

acknowledge that studying optimal pixel size to

know the ratio of signal to random variability or

noise ought to consider spatial statistical analysis.
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